Partitioning 3-Edge-Colored Complete Equi-Bipartite Graphs by Monochromatic Trees under a Color Degree Condition

نویسندگان

  • Xueliang Li
  • Fengxia Liu
چکیده

The monochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the minimum integer k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex-disjoint monochromatic trees. In general, to determine this number is very difficult. For 2edge-colored complete multipartite graph, Kaneko, Kano, and Suzuki gave the exact value of t2(K(n1, n2, · · · , nk)). In this paper, we prove that if n ≥ 3, and K(n, n) is 3-edge-colored such that every vertex has color degree 3, then t3(K(n, n)) = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

equi-bipartite graphs by monochromatic trees under a color degree condition

The monochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the minimum integer k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex-disjoint monochromatic trees. In general, to determine this number is very difficult. For 2-edge-colored complete multipartite graph, Kaneko, Kano, and Suzuki gave the ex...

متن کامل

Partitioning 2-edge-colored graphs by monochromatic paths and cycles

We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...

متن کامل

Partitioning edge-2-colored graphs by monochromatic paths and cycles

We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...

متن کامل

Partitioning 2-edge-colored complete multipartite graphs into monochromatic cycles, paths and trees

In this paper we consider the problem of partitioning complete multipartite graphs with edges colored by 2 colors into the minimum number of vertex disjoint monochromatic cycles, paths and trees, respectively. For general graphs we simply address the decision version of these three problems the 2-PGMC, 2-PGMP and 2-PGMT problems, respectively. We show that both 2-PGMC and 2-PGMP problems are NP...

متن کامل

Partitioning 2-Edge-Colored Ore-Type Graphs by Monochromatic Cycles

Consider a graph G on n vertices satisfying the following Ore-type condition: for any two non-adjacent vertices x and y of G, we have deg(x)+deg(y) > 3n/2. We conjecture that if we color the edges of G with 2 colors then the vertex set of G can be partitioned to two vertex disjoint monochromatic cycles of distinct colors. In this paper we prove an asymptotic version of this conjecture. 1 Backgr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008